Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Rep ; 51(1): 500, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598005

RESUMO

BACKGROUND: Inflammatory bowel disease (IBD) is a chronic gastrointestinal (GI) condition comprising Crohn's disease (CD) and ulcerative colitis (UC). The pathogenesis involves immune system dysregulation, with increased Th (T helper cell)17 cells and reduced regulatory T cell (Treg) differentiation. Transforming growth factor-ß (TGF-ß) secretion from Tregs helps control inflammation, and its production is regulated by glycoprotein-A repetition predominant (GARP) protein along with non-coding RNAs (ncRNAs) like microRNA(miR)-142-3p and metastasis associated lung adenocarcinoma transcript 1 (MALAT1) long non-coding RNAs (LncRNAs). This study analyzed their expression in IBD. METHODS: Blood samples were collected from 44 IBD patients, and 22 healthy controls (HC). RNA extraction and circular DNA (cDNA) synthesis were performed. Real-time polymerase chain reaction (RT-PCR) measured gene expression of GARP, MALAT1, and miR-142-3p. Correlations and group differences were statistically analyzed. RESULTS: Compared to controls, GARP was downregulated while MALAT1 and miR-142-3p were upregulated significantly in IBD group. GARP and MALAT1 expressions positively correlated in controls. MALAT1 and miR-142-3p expressions positively correlated in IBD group. MALAT1 was downregulated in aged HC but upregulated with smoking history across groups. No correlations occurred between gene expression and gender, diet, infections, or disease activity scores. CONCLUSIONS: Dysregulation of GARP, MALAT1, and miR-142-3p likely contributes to inflammation in IBD by reducing TGF-ß. MALAT1 is linked to smoking and age-related changes. These genes have potential as diagnostic markers or therapeutic targets for personalized IBD treatment.


Assuntos
Doenças Inflamatórias Intestinais , MicroRNAs , RNA Longo não Codificante , Humanos , Idoso , RNA Longo não Codificante/genética , Doenças Inflamatórias Intestinais/genética , Inflamação/genética , Glicoproteínas , MicroRNAs/genética , Biomarcadores , Fator de Crescimento Transformador beta/genética
2.
J Biomol Struct Dyn ; 42(4): 2094-2110, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37129119

RESUMO

Monkeypox virus is a member of the Poxviridae family, which causes monkeypox zoonotic disease. Since July 2022, the prevention of monkeypox have become more considerable due to the new outbreak, making it a global concern. Therefore, we used an in silico-based method, including immunoinformatics, bioinformatics, molecular docking, and gene cloning approaches to design a novel multiepitope vaccine against monkeypox. Three immunogenic envelope proteins of monkeypox virus, including G10R, E8L, and A30L, were selected to predict appropriate immune system stimulator epitopes. The A30L is common between smallpox and monkeypox virus, so the proposed vaccine may be effective against smallpox too. There is no evidence of allergenicity and toxicity of the vaccine epitopes. To boost the immunogenicity of the designed vaccine, we used the helper epitope of PADRE and RS01as adjuvants. Furthermore, some linkers are used to link epitopes and adjuvants together. The physicochemical futures of the designed vaccine were assessed. The tertiary structure of the vaccine was modeled and then refined to improve its structure and physicochemical properties. To analyze the vaccine construct and TLR4 complex affinity, they were docked to gather. Besides, the vaccine was cloned into E.coli. pET-21b(+) plasmid to reveal that it can be expressed and stimulate the immune system. Immune stimulation evaluation showed that the candidate vaccine could induce the production of IgM, IgG1, and IgG2 antibodies. Overall, we suggested an effective vaccine candidate against monkeypox. However, Future studies and clinical trials should be done to ensure the efficacy and safety of this vaccine.Communicated by Ramaswamy H. Sarma.


Assuntos
Varíola , Vacinas , Humanos , Receptor 4 Toll-Like , Simulação de Acoplamento Molecular , Biologia Computacional , Epitopos , Escherichia coli , Epitopos de Linfócito T , Epitopos de Linfócito B , Vacinas de Subunidades
3.
Cell Reprogram ; 25(5): 195-211, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37782910

RESUMO

Chimeric antigen receptor (CAR) T cell therapy is a promising cell-based immunotherapy applicable to various cancers. High cost of production, immune rejection, heterogeneity of cell product, limited cell source, limited expandability, and relatively long production time have created the need to achieve a universal allogeneic CAR-T cell product for "off-the-shelf" application. Since the innovation of induced pluripotent stem cells (iPSCs) by Yamanaka et al., extensive efforts have been made to prepare an unlimited cell source for regenerative medicine, that is, immunotherapy. In the autologous grafting approach, iPSCs prepare the desired cell source for generating autologous CAR-T cells through more accessible and available sources. In addition, generating iPSC-derived CAR-T cells is a promising approach to achieving a suitable source for producing an allogeneic CAR-T cell product. In brief, the first step is reprogramming somatic cells (accessible from peripheral blood, skin, etc.) to iPSCs. In the next step, CAR expression and T cell lineage differentiation should be applied in different arrangements. In addition, in an allogeneic manner, human leukocyte antigen/T cell receptor (TCR) deficiency should be applied in iPSC colonies. The allogeneic iPSC-derived CAR-T cell experiments showed that simultaneous performance of HLA/TCR deficiency, CAR expression, and T cell lineage differentiation could bring the production to the highest efficacy in generating allogeneic iPSC-derived CAR-T cells.


Assuntos
Células-Tronco Pluripotentes Induzidas , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T , Imunoterapia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo
4.
Med Oncol ; 40(1): 33, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36460874

RESUMO

T regulatory cells play a crucial role in antitumor immunity suppression. Glycoprotein-A repetitions predominant (GARP), transmembrane cell surface marker, is mostly expressed on Tregs and mediates intracellular organization of transforming growth factor-beta (TGF-ß). The physiological role of GARP is immune system homeostasis, while it may cause tumor development by upregulating TGF-ß secretion. Despite the vast application of anti- programmed cell death protein-1 (PD-1)/programmed death-ligand 1 (PD-L1) and anti-cytotoxic T-lymphocyte Antigen-4 (CTLA-4) antibodies in immunotherapy, anti-GARP antibodies have the advantage of better response in patients who has resistance to anti-PD-1/PD-L1. Furthermore, simultaneous administration of anti-GARP antibody and anti-PD-1/PD-L1 antibody is much more effective than anti-PD-1/PD-L1 alone. It is worth mentioning that the GARP-mTGF-ß complex is more potent than secretory TGF-ß to induce T helper 17 cells differentiation in HIV + patients. On the other hand, TGF-ß is an effective cytokine in cancer development, and some microRNAs could control its secretion by regulating GARP. In the present review, some information is provided about the undeniable role of GARP in cancer progression and its probable importance as a novel prognostic biomarker. Anti-GARP antibodies are also suggested for cancer immunotherapy.


Assuntos
Proteínas de Membrana , Neoplasias , Humanos , Antígeno B7-H1 , Glicoproteínas , Imunoterapia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Fator de Crescimento Transformador beta , Proteínas de Membrana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...